Abstract Submitted for the DAMOP15 Meeting of The American Physical Society

Cooper minima in electron spectra after multiphoton abovethreshold ionization¹ DMITRY A. TELNOV, St. Petersburg State University, Russia, SHIH-I CHU, University of Kansas, USA — We have performed calculations of electron momentum and energy distributions after multiphoton above-threshold ionization (ATI) for several one-electron quantum systems $(H, He^+, H_2^+, and HeH^{2+})$ in intense laser fields. We use the carrier wavelengths in the near-infrared band (730 to 800 nm) and the peak intensities 5×10^{13} to 1×10^{14} W/cm². For some initial states of the systems under consideration, the spectra exhibit minima in the lowenergy region (3 to 7 eV), which resemble the famous Cooper minima in one-photon ionization processes. The minima are well pronounced for the initial states with the electronic orbitals that have nodal surfaces, such as 2s state of He⁺, $1\sigma_u$ state of H₂⁺, and 2σ state of HeH²⁺. Such minima are not observed for the initial ground electronic states, as well as for initial 2p state of He⁺, which possess nodeless orbitals. The effect is essentially non-perturbative; the positions of the minima depend on the intensity and frequency of the laser field. Nonetheless, it seems the nodal structure of the initial electronic orbital plays a crucial role in shaping these minima in the ATI electron spectra.

¹This work is partially supported by DOE.

Shih-I Chu University of Kansas

Date submitted: 17 Jan 2015

Electronic form version 1.4