DAMOP15-2015-000148

Abstract for an Invited Paper for the DAMOP15 Meeting of the American Physical Society

Attosecond Delays in Resonant Photoionization

ALFRED MAQUET, Universite Pierre et Marie Curie

Attosecond delays in the photoionization of atomic states have been evidenced in recent experiments performed in the 2010's [1, 2]. The delays were associated to the emission of photoelectron wave packets ejected from different atomic states, in the combined presence of attosecond pulses of XUV radiation and of a synchronized IR laser pulse, the latter being used as a reference "clock" [3]. These experiments were performed at XUV frequencies connecting the ground state to a "flat" continuum. Theoretical treatments were able to relate the measured delays to Wigner's definition of time delays in terms of the energy derivative of the phase-shift attached to the continuum wave functions of the photoelectrons [4]. Attention has recently shifted towards the case of resonant photoionization in the course of which the XUV frequency is tuned close to a resonance of the target system. The case of a transition towards an autoionizing states of the target is particularly interesting as it makes evident the role of electronic correlations [5]. Here, we shall present recent advances realized in the theoretical interpretation of this new class of experiments.

[1] M. Schultze et al. Science **328**, 1658-1662 (2010).

- [2] K. Klünder, et al. Phys. Rev. Lett. **106**, 143002 (2011) 5 p.
- [3] A. Maquet, J. Caillat, and R. Taïeb, J. Phys. B: At. Mol. Opt. Phys. 47, 204004 (2014) 13 p.
- [4] E. P. Wigner, Phys. Rev. 98, 145-7 (1955).
- [5] Christian Ott, et al. *s*Nature **516**, 374-378 (2014).