Experimental realization of the topological Haldane model

MICHAEL MESSER, GREGOR JOTZU, RÉMI DESBUQUOIS, MARTIN LEBRAT, THOMAS UEHLINGER, FREDERIK GÖRG, DANIEL GREIF, TILMAN ESSLINGER, ETH Zurich — The Haldane model is a fundamental example of a Hamiltonian exhibiting topologically distinct phases of matter and featuring a quantum Hall effect without a net magnetic field. We report on the experimental realization of the Haldane model and the characterization of its topological band-structure, using non-interacting ultracold fermionic atoms in a periodically modulated honeycomb lattice. Here the inertial force generated by circular modulation of the lattice position breaks time-reversal symmetry and leads to complex next-nearest-neighbor tunneling. We explore the resulting Berry-curvatures of the lowest band and map out topological phase transitions connecting distinct regimes. Furthermore we extend our method to create spin dependent effective Hamiltonians by periodic modulation of a magnetic field gradient. For each spin state, the differing band structure can be characterized either by measuring the expansion of an atomic cloud in the lattice, or by a measurement of the effective mass through dipole oscillations. Our method can be used to create systems where one state is pinned to the lattice, while the other remains itinerant.

Michael Messer
ETH Zurich

Date submitted: 29 Jan 2015

Electronic form version 1.4