Abstract Submitted for the DAMOP15 Meeting of The American Physical Society

Spectroscopy of the forbidden ${}^{1}S_{0} \rightarrow {}^{3}P_{0}$ transition on ultra-cold ytterbium atoms ALEXANDRE DAREAU, MATTHIAS SCHOLL, QUENTIN BEAUFILS, DANIEL DÖRING, JÉRÔME BEUGNON, FABRICE GERBIER, Laboratoire Kastler Brossel, ENS, CNRS — Cold atoms in optical lattices are often considered a rich playground for emulating condensed matter systems, since they make it possible to engineer many-body Hamiltonians with tunable parameters. However, one missing feature is the ability to emulate orbital magnetism. Recent proposals for simulating orbital magnetism with neutral atoms rely on a state-dependent optical lattice with laser-driven hopping.^{1,2} Ytterbium, with its long lived metastable state $({}^{3}P_{0})$, is a well-suited candidate for the implementation of such schemes. Addressing the forbidden transition between ytterbium ground $({}^{1}S_{0})$ and meta-stable $({}^{3}P_{0})$ states is experimentally challenging, and requires the use of a laser with stability close to the standards of atomic clocks. I will report on the building of a ultra-narrow laser locked on a high-finesse low-expansion cavity.³ I will then show how the absolute frequency of the cavity modes can be calibrated by performing high-resolution spectroscopy on molecular iodine, allowing us perform Doppler spectroscopy on the ${}^{1}S_{0} \rightarrow {}^{3}P_{0}$ transition of an ytterbium BEC.

¹D. Jaksch and P. Zoller, NJP 5, 56 (03)
²F. Gerbier and J. Dalibard, NJP 12, 033007 (10)
³Dareau *et al.*, arXiv:1412.5751

Alexandre Dareau Laboratoire Kastler Brossel, ENS, CNRS

Date submitted: 29 Jan 2015

Electronic form version 1.4