Few-XUV-photon laser-assisted double ionization of helium1 \metal{Al-HUA LUI, UWE THUMM, Physics Department, Kansas State University} — We studied the few–photon IR laser–assisted double ionization of helium in ultrashort XUV pulse(s) by numerically solving the time-dependent Schrödinger equation in full dimensionality within a finite–element discrete–variable–representation scheme \cite{1}. We calculated energy and joint angle distributions in coplanar geometry, where the emitted electron momenta and identical polarization axis of the linearly polarized XUV and IR pulses lie in a plane. By analyzing joint angle distributions and asymmetries for two-XUV–photon double ionization, we identify “sequential” and “non-sequential” contributions for ultrashort XUV pulses whose spectra overlap the sequential ($\hbar \omega > 54.4$ eV) and non-sequential (39.5 eV $< \hbar \omega < 54.4$ eV) double ionization regimes. In addition, we show that emission angles between the two photoelectrons can be controlled by adjusting parameters of the XUV and assisting IR pulse.

1Supported by U.S. NSF and the Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research, U.S. DoE.