Channel competition in strong-field dissociation of CS$^{+1}$

BETHANY JOCHIM, M. ZOHRABI, K.J. BETSCH, U. ABLIKIM, BEN BERRY, T. SEVERT, A.M. SUMMERS, K.D. CARNES, B.D. ESRY, I. BEN-ITZHAK, J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS USA 66506 — We study intense ultrafast laser-induced dissociation of a CS$^+$ ion beam, utilizing a coincidence 3-D momentum imaging technique. Over a laser intensity range of 10^{10}–10^{16} W/cm2, we find clear intensity-dependent behavior of the C$^+$+S and C+S^+ branching ratios. Specifically, we observe that the branching ratios are nearly equal at low intensities ($\sim 10^{10}$–10^{12} W/cm2) and deviate from each other at higher intensities ($>10^{13}$ W/cm2), where C+S^+ dominates. We propose that the low-intensity branching ratio behavior is due to strong mixing of states corresponding to the relevant dissociation limits mediated by the non-adiabatic couplings, and we identify possible dissociation pathways involving these couplings. Another aspect of channel competition, closing and opening of the two dissociation channels as a function of total energy, is distinctly observed, and this behavior is characterized using the well-known Wigner law for near-threshold behavior [1,2].

Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. BJ is also supported by DOE-SCGF (DE-AC05-06OR23100).

Bethany Jochim
Kansas State University

Date submitted: 29 Jan 2015