Abstract Submitted for the DAMOP15 Meeting of The American Physical Society

Angular-momentum couplings in long-range Rydberg molecules DAVID ANDERSON, STEPHANIE MILLER, GEORG RAITHEL, University of Michigan — We present results of a recent theoretical study of angular-momentum couplings in long-range diatomic Rydberg molecules formed between a rubidium Rydberg and $5S_{1/2}$ ground-state atom [1]. A Fermi model is used that takes into account all angular-momentum couplings comparable to the $e^- + 5S_{1/2}$ scattering interaction strength. The model includes S- and P-wave singlet and triplet e^- + $5S_{1/2}$ scattering, the fine-structure of the Rydberg atom as well as the hyperfinestructure of the $5S_{1/2}$ atom. The effects of these couplings on the adiabatic molecular potentials are discussed. We calculate bound-state energies, lifetimes, and electric and magnetic dipole moments for the ${}^{87}\text{Rb}(nD_i + 5S_{1/2})$ molecules in all potentials. The hyperfine structure gives rise to mixed singlet-triplet potentials in both low- and high- ℓ molecular classes. These spin-mixed potentials are deep enough to sustain bound states, which were recently observed in low- ℓ Cs₂ molecules [2]. We also study the effects of the hyperfine structure on the deep ${}^{3}S$ and ${}^{3}P$ adiabatic molecular potentials in both Rb_2 and Cs_2 molecules.

[1] D. A. Anderson, S. A. Miller, G. Raithel, PRA (2014).

[2] H. Saßmannshausen, F. Merkt, J. Deiglmayr, arXiv:1412.0846 (2014).

David Anderson University of Michigan

Date submitted: 30 Jan 2015

Electronic form version 1.4