From Maxwell’s Electrodynamics to Relativity, a Geometric Journey

FELIX T. SMITH, Retired — Since Poincaré and Minkowski recognized \(ict \) as a fourth coordinate in a four-space associated with the Lorentz transformation, the occurrence of that imaginary participant in the relativistic four-vector has been a mystery of relativistic dynamics. A reexamination of Maxwell’s equations (ME) shows that one of their necessary implications is to bring to light a constraint that distorts the 3-space of our experience from strict Euclidean zero curvature by a time-varying, spatially isotropic term creating a minute curvature \(K_{\text{curv}}(t) \) and therefore a radius of curvature \(r_{\text{curv}}(t) = K_{\text{curv}}^{-1/2}(t) \) (F. T. Smith, Bull. Am. Phys. Soc. 60, #2, Abstr. V1.00294, March, 2015). In the light of Michelson-Morley and the Lorentz transformation, this radius must be imaginary, and the geometric curvature \(K \) must be negative. From the time dependence of the ME the rate of change of the curvature radius is shown to be \(dr_{\text{curv}}/dt = ic \), agreeing exactly with the Hubble expansion. The imaginary magnitude is the radius of curvature; the time itself is not imaginary. Minkowski’s space-time is unjustified. Important consequences for the foundations of special relativity follow.