Abstract Submitted for the DAMOP15 Meeting of The American Physical Society

Dielectronic recombination of Zn-like W⁴⁴⁺ from Cu-like W⁴⁵⁺¹ U.I. SAFRONOVA, A.S. SAFRONOVA, University of Nevada, Reno — Energy levels, radiative transition probabilities, and autoionization rates for $[Ar]3d^{10}4l'nl$ $(n=4-12, l \le n-1)$, $[Ar]3d^{10}5l'nl (n=5-8, l \le n-1)$, and $[Ar]3d^{9}4l'4l''nl (n=4-5, l \le n-1)$ $l \leq n-1$) states in Zn-like tungsten (W⁴⁴⁺) are calculated using the Hartree-Fock-Relativistic method (COWAN code), the Multiconfiguration relativistic Hebrew University Lawrence Atomic Code (HULLAC code), and the relativistic many-body perturbation theory method (RMBPT code). Autoionizing levels above the thresholds $[Ar]3d^{10}4s$ are considered. It is shown that the contribution of the highly excited states is very important for the calculation of total DR rates. Contributions to DR rate from the excited [Ar]4l'nl states with $n \ge 13$ and [Ar]4l'nl states with $n \ge 8$, and additionally from core-excited $[Ar]3d^94l'4l''nl$ states with $n \ge 5$ are estimated by extrapolation of all atomic parameters. The total DR rate coefficient is derived as a function of electron temperature. Synthetic dielectronic satellite spectra from Zn-like W are simulated in a broad spectral range from 4 to to 140Å. These calculations provide highly accurate values for a number of W⁴⁴⁺ properties useful for a variety of applications, including fusion and HEDP applications.

¹This work is supported in part by DOE under NNSA Cooperative Agreement DE-NA0001984

> U. I. Safronova University of Nevada, Reno

Date submitted: 30 Jan 2015

Electronic form version 1.4