Abstract Submitted
for the DAMOP15 Meeting of
The American Physical Society

Fast Acting Optical Forces From Far Detuned, High Intensity Light
CHRISTOPHER CORDER, BRIAN ARNOLD, XIANG HUA, HAROLD METCALF, Physics Dept., Stony Brook University, Stony Brook NY 11794-3800
— We are exploring fast acting, strong optical forces from standing wave light fields with high intensity and large detuning $\delta \gg \gamma$, where γ is the transition linewidth. We observe these fast acting forces on a time scale of a few times the excited state lifetime $\tau \equiv 1/\gamma$; thus an atom may experience at most one or two spontaneous emission events. The dipole force is typically considered when the Rabi frequency $\Omega \ll \delta$, but we use $\Omega \sim \delta$ so the usual approximations break down because a significant excited state population can occur, even for our short interaction times that limit spontaneous emission. Our experiment measures the transverse velocity distribution of a beam of $^2\!S$ He after a chosen interaction time with a perpendicular standing wave detuned from the $^2\!S\rightarrow^2\!P$ transition near 389 nm. The distribution shows velocity resonance effects that persist over a large range of Ω. We also simulate the experiment numerically using the Optical Bloch Equations and the results are consistent with our measurements.

1Supported by ONR and Dept. of Education GAANN

Brian Arnold
State Univ of NY- Stony Brook

Date submitted: 30 Jan 2015