Abstract Submitted for the DAMOP15 Meeting of The American Physical Society

Magneto-association near an atom-dimer resonance 1 D. LUO, J.H.V. NGUYEN, R.G. HULET, Department of Physics and Astronomy and Rice Quantum Institute, Rice University, Houston, TX 77005 — Over the past decade the universal scaling of Efimov trimers has been explored in various atomic species by measuring the three-body loss coefficient. An enhancement of the three-body loss at the atom-dimer resonance has been observed, 2,3 but remains unexplained. It has been attributed to an "avanlanche mechanism" based on resonant atom-dimer scattering, yet the effectiveness of the hypothesis is under scrutiny. 4,5 We present a new piece to the puzzle. In our work, Feshbach dimers and Efimov trimers are formed near the atom-dimer resonance by RF-association, from a Bose-Einstein condensate of 7 Li atoms. The molecular binding energies are tunable by the broad Feshbach resonance of the atoms in the $|1,1\rangle$ state. We observe that the dimer formation rate is significantly enhanced at the atom-dimer resonance. The origin of this enhancement is unclear, but it may be closely related to the enhancement of the three-body loss rate.

Henry Luo Rice University

Date submitted: 30 Jan 2015 Electronic form version 1.4

¹Work supported by the NSF, ARO, and the Welch Foundation.

²S.E. Pollack, D. Dries, & R.G. Hulet, Science, 326, 1683 (2009)

 $^{^3\}mathrm{M}.$ Zaccanti et al. Nature Physics, 5, 586 (2009)

⁴J. Schuster et al. Phys. Rev. Lett. 87, 170404 (2001)

⁵M. Hu et al. Phys. Rev. A 90, 013619 (2014)