Abstract Submitted for the DAMOP15 Meeting of The American Physical Society

Strong-field induced bond rearrangement and hydrogen migration in small hydrocarbons¹ YUBARAJ MALAKAR, WRIGHT LEE PEAR-SON, ARTEM RUDENKO, J.R. Macdonald Laboratory, Kansas State University, Manhattan, KS 66506 — Imaging and control schemes for photo-induced structural rearrangement dynamics (isomerization, proton migration, H₂/H₃ elimination etc.) are of particular interest to ultrafast photochemistry. The strong-field regime offers a variety of possibilities to map these reactions (e.g., employing coincident momentumresolved ion spectroscopy), and to control them by exploiting field-modified or fieldinduced potentials. Here we report on a series of experiments that study bond rearrangement in small hydrocarbons (CH_4, C_2H_2, C_2H_4) irradiated by intense 800 nm laser pulses. We disentangle different fragmentation pathways and identify the isomerization channels by measuring coincident ion momentum patterns for twoor three-body breakup channels. For C_2H_2 and C_2H_4 isomerization, we observe the evolution of kinetic energy release spectra with increasing laser pulse duration, which allows us to distinguish the isomerization pathways active within or after the pulse. We demonstrate that a significant (up to an order of magnitude) enhancement of C_2H_4 isomerization yield and H^{3+} elimination from CH_4 for a given light intensity can be achieved with an increase in pulse duration from 25 to 200 fs.

¹This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

> Artem Rudenko Kansas State University, Manhattan, KS 66506

Date submitted: 30 Jan 2015

Electronic form version 1.4