Helium P-State Energies and Quantum Defect Analysis

TRAVIS VALDEZ, RYAN PECK, GORDON W.F. DRAKE, University of Windsor — Quantum defects provide a simple and accurate method of extending known atomic energies for low principal quantum number n to higher n up to the series limit, and including the scattering phase shift beyond. We will present new calculations of improved accuracy for the $1snp \, ^1P$ and 3P states of helium up to $n = 12$, based on variational calculations in Hylleraas coordinates. The results will be used to determine accurate values for the coefficients in the quantum defect expansion, $\delta = \delta_0 + \delta_2/n^2 + \delta_4/n^4 + \cdots$, where $n^* = n - \delta$. We will also test the usual assumption that only the even powers of $1/n^*$ need be included [1]. In addition, we will study the effectiveness of a unitary transformation in reducing the numerical linear dependence of the basis set for large basis sets.

1Research supported by the Natural Sciences and Engineering Research Council of Canada