Abstract Submitted for the DAMOP15 Meeting of The American Physical Society

Laser cooling of nuclear spin 0 alkali $^{78}\mathrm{Rb^1}$ J.A. BEHR, A. GORELOV, TRIUMF, M. ANHOLM, University of Manitoba — The textbook example for sub-Doppler cooling is a J=1/2 I=0 alkali atom in lin \perp lin molasses. In the σ^+ σ^- configuration of a standard MOT, the main sub-Doppler cooling mechanism relies on changing alignment (M_F^2 population) with the summed linear polarization orientation, but there is no such variation in AC Stark shift for F=1/2. We have nevertheless looked for signs of sub-Doppler cooling by trapping I=0 $^{78}\mathrm{Rb}$ in a standard MOT and measuring the cloud size as a function of laser detuning and intensity. The $^{78}\mathrm{Rb}$ cloud size does not change significantly with lowered intensity, and expands slightly with detuning, consistent with minimal to no sub-Doppler cooling. Our geometry does show the well-known substantially smaller cloud size with detuning and intensity for I=3/2 $^{87}\mathrm{Rb}$. Maintaining an I=0 alkali cloud size with lowered intensity will help our planned β - ν correlation experiments in $^{38m}\mathrm{K}$ decay by suppressing possible production of photoassisted dimers.

¹Supported by NSERC and NRC Canada through TRIUMF

John Behr TRIUMF

Date submitted: 02 Feb 2015 Electronic form version 1.4