Electron attachment to the interhalogens ClF, ICl, and IBr.1 T. M. MILLER, J. P. WIENS, J. C. SAWYER, N. S. SHUMAN, A. A. VIGGIANO, Air Force Research Lab, M. KHAMESIAN, V. KOKOOLELINE, University of Central Florida, I. I. FABRIKANT, University of Nebraska — Electron attachment rate coefficients have been measured for the interhalogens ClF, ICl, and IBr over the range 300-900 K using a flowing-afterglow Langmuir-probe apparatus. The ClF case was also studied theoretically. ClF was found to attach electrons somewhat inefficiently with a rate coefficient of 7.5×10^{-9} cm3/s at 300 K, doubling by 700 K. Even so, attachment to ClF is more efficient than seen earlier for F$_2$ and Cl$_2$, which brings up the interesting distinction that attachment to F$_2$ and Cl$_2$ is known to have p-wave threshold behavior, while in ClF the inversion symmetry is broken, allowing an s-wave component. The increase in the rate coefficient for attachment to ClF with temperature was found to be less pronounced than with F$_2$ and Cl$_2$. Ab initio potential energy curves were calculated for ClF and ClF$^-$, and R-matrix theory was used to obtain the resonance widths and energies for the ground state curve crossing, which takes place near the equilibrium internuclear separation in ClF. A local complex potential model was used to calculate attachment cross sections and thermal rate coefficients. There is reasonable agreement between theory and experiment within the estimated 25% uncertainties in the data. Cl$^-$ is the only product ion from thermal electron attachment to ClF. Attachment to ICl is even less efficient by almost an order of magnitude than to ClF, namely, 9.5×10^{-10} cm3/s at 300 K. Attachment to IBr is small enough that we place an upper limit of $<10^{-10}$ cm3/s at 300 K.

1Supported by AFOSR, DOE, and NSF

T. M. Miller
Air Force Research Lab

Date submitted: 18 Dec 2015

Electronic form version 1.4