Abstract Submitted for the DAMOP16 Meeting of The American Physical Society

Mapping Ultrafast Dynamics of Highly Excited H₂ by Attosecond VUV-Radiation¹ THORSTEN WEBER, FELIX STURM, TRAVIS WRIGHT, DIPANWITA RAY, NIRANJAN SHIVARAM, DANIEL SLAUGHTER, IRINA BOCHAROVA, Lawrence Berkeley Natl Lab, PREDRAG RANITOVIC, Extreme Light Infrastructure, ALI BELKACEM, Lawrence Berkeley Natl Lab — We show how attosecond vacuum ultraviolet (VUV) and femtosecond infrared (IR) radiation can be used to excite and map dynamics of a highly excited neutral hydrogen molecule. By using time-delayed, strong laser pulses and ion imaging, we map the dynamics of highly-excited, bound states of hydrogen molecules. Due to the large stretching amplitude of the B electronic state, excited by the 9th harmonic of the fundamental laser frequency, the effective ionization potential of the hydrogen molecular ion changes substantially as the nuclear wave packet (NWP) vibrates in the bound, B potential energy curve. Therefore, the probability of ionizing the neutrally-excited hydrogen molecule by the IR probe pulse changes as the NWP evolves in the B potential. We probe this dynamics by ionizing the vibrating molecule by means of timedelayed IR radiation, and identify the dissociation channels with 3D-momentum ion imaging.

¹supported by DOE under Contract No. DE-AC02-05CH11231

Thorsten Weber Lawrence Berkeley Natl Lab

Date submitted: 01 Mar 2016 Electronic form version 1.4