Controlling autoionization in strontium two-electron-excited states

ROBERT FIELDS, XINYUE ZHANG, F.BARRY DUNNING, Department of Physics and Astronomy, Rice University, SHUHEI YOSHIDA, JOACHIM BURGDÖRFER, Institute for Theoretical Physics, Vienna University of Technology

One challenge in engineering long-lived two-electron-excited states, i.e., so-called planetary atoms, is autoionization. Autoionization, however, can be suppressed if the outermost electron is placed in a high-n, $n \sim 300 - 600$, high-L state because such states have only a very small overlap with the inner electron, even when this is also excited to a state of relatively high n and hence of relatively long lifetime. Here the L-dependence of the autoionization rate for high-n strontium Rydberg atoms is examined during excitation of the core ion $5s \, ^2S_{1/2}-5p \, ^2P_{3/2}$ transition. Measurements in which the angular momentum of the Rydberg electron is controlled using a pulsed electric field show that the autoionization rate decreases rapidly with increasing L and becomes very small for values larger than ~ 20. The data are analyzed with the aid of calculations undertaken using complex scaling.

Research supported by the NSF and Robert A. Welch Foundation

Xinyue Zhang
Department of Physics and Astronomy, Rice University

Date submitted: 25 Jan 2016