Multiphoton double ionization of the He atom1 Y. LI, M. S. PINDZOLA, Department of Physics, Auburn University — Time-dependent close-coupling (TDCC) calculations are made for the multiphoton double ionization of the He atom under the influence of a fast pulse XUV laser. One set of TDCC calculations employs $l_1m_1l_2m_2$ coupling on a 2D (r_1, r_2) numerical lattice, a second set of TDCC calculations employs m_1m_2 coupling on a 4D ($r_1, \theta_1, r_2, \theta_2$) numerical lattice, and a third set of TDCC calculations employs m_1m_2 coupling on a 4D (ρ_1, z_1, ρ_2, z_2) numerical lattice. Studies are made to see which TDCC method is the most efficient at explaining measurements as the number of photons absorbed is increased.

1Work supported in part by grants from NASA, NSF, and DOE