Towards quantum control of molecular ions1 DAVID HANNEKE, EDWARD KLEINER, ALEXANDER FRENETT, Amherst College — Many atoms and molecules possess interesting spectroscopic transitions, but lack dissipative transitions useful for control and detection of internal states. In particular, molecules are candidates for quantum memories, low-temperature chemistry studies, tests of fundamental symmetries, and searches for time-variation of fundamental constants, but most lack a convenient cycling transition. By co-trapping a molecular ion with an atomic ion, the atom can provide all dissipation and detection. We present a system capable of such quantum control and report progress towards its use. We also present candidate molecules with analysis of potentially interesting transitions and systematic effects.

1This work is supported by the NSF and Amherst College.