Abstract Submitted for the DAMOP16 Meeting of The American Physical Society

Cavity Control and Cooling of Nanoparticles in High Vacuum

JAMES MILLEN, Univ of Vienna — Levitated systems are a fascinating addition to the world of optically-controlled mechanical resonators. It is predicted that nanoparticles can be cooled to their c.o.m. ground state via the interaction with an optical cavity¹. By freeing the oscillator from clamping forces dissipation and decoherence is greatly reduced, leading to the potential to produce long-lived, macroscopically spread, mechanical quantum states, allowing tests of collapse models and any mass limit of quantum physics. Reaching the low pressures required to cavity-cool to the ground state has proved challenging². Our approach is to cavity cool a beam of nanoparticles in high vacuum. We can cool the c.o.m. motion of nanospheres³, and control the rotation of nanorods⁴, with the potential to produce cold, aligned nanostructures. Looking forward, we will utilize novel microcavities to enhance optomechanical cooling, preparing particles in a coherent beam ideally suited to ultra-high mass interferometry at 10⁷ a.m.u.

¹T S Monteiro et al., **New J. Phys. 15** (2013)

James Millen Univ of Vienna

Date submitted: 31 Jan 2016 Electronic form version 1.4

²JM et al., Nature Nanotechnology 9, 425 (2014)

³P Asenbaum, et al., **Nature Communications 4**, (2013)

⁴S Kuhn et al., **Nano Letters 15**, (2015)