Dual interferometry with a tunable point of minimum magnetic sensitivity1 EDUARDO GOMEZ, SAEED HAMZELOUI, DANIEL MARTINEZ, VAHIDE ABEDIYEH, NIEVES ARIAS, Physics Institute, Autonomous University of San Luis Potosi, VICTOR MANUEL VALENZUELA, Autonomous University of Sinaloa — The clock transition is well known for its minimum magnetic sensitivity at $B=0$. The hyperfine transition between $F=1$, $m=-1$ and $F=2$, $m=1$ in ^{87}Rb also shows a point of minimum magnetic sensitivity but it happens at a field of 3.2 Gauss. An interferometer that uses a mixture of the previous two transitions gives a minimum of magnetic sensitivity at a tunable value of the magnetic field between 0 and 3.2 Gauss. The desired magnetic field value can be selected by varying the population in each transition. The relative populations are controlled with a microwave pulse joining states in both interferometers.

1Support from CONACYT and Fundacion Marcos Moshinsky