BEC of ^{41}K in a Fermi sea of ^{6}Li

RIANNE S. LOUS, ISABELLA FRITSCHETE, BO HUANG, MICHAEL JAG, MARKO CETINA, IQOQI Austrian Academy of Sciences and Inst. for Exp. Physics, Univ. of Innsbruck, JOOK T.M. WALRAVEN, Van der Waals- Zeeman Inst., Inst. of Physics, Univ. of Amsterdam and IQOQI Austrian Academy of Sciences, RUDOLF GRIMM, IQOQI Austrian Academy of Sciences and Inst. for Exp. Physics, Univ. of Innsbruck — We report on the production of a ^{41}K Bose-Einstein condensate (BEC) immersed in a degenerate two-component ^{6}Li Fermi sea. After evaporation in an optical dipole trap, we obtain 1.2×10^4 ^{41}K atoms with a 55% BEC fraction and a Fermi sea with $T/T_F < 0.1$, consisting of 1.8×10^5 ^{6}Li atoms in each of the lowest two spin states. This opens the way to study the collective behavior of a mass-imbalanced mixture of two coupled superfluids. The double-degenerate Fermi-Bose mixture also enables the study of interacting bosonic impurities in a Fermi sea. Using loss spectroscopy, we observe the $335.8 G$ Feshbach resonance, which is comparable to the one between ^{6}Li and the fermionic ^{40}K isotope exploited in our previous studies on the quantum many-body dynamics of fermionic impurities in a Fermi sea. Investigating the interacting bosonic impurities enables the direct comparison of the role of quantum statistics for fermionic and bosonic impurities.

1This work is supported by the Austrian Science Fund FWF within the collaborative research grant FoQuS.