Abstract Submitted for the DAMOP16 Meeting of The American Physical Society

Towards quantum simulation with two-electron ${}^{173}Yb$ fermions in an optical lattice¹ BO SONG, YUEYANG ZOU, CHENGDONG HE, ELNUR HACIYEV, GEYUE CAI, WING KIN CHAN, WEI HUANG, GYU-BOONG JO², Hong Kong Univ of Sci Tech — Recent development of cooling and manipulating Ytterbium atoms opens a new avenue to investigate unprecedented atomic systems with SU(N) spin symmetry and orbital degrees of freedom. The available metastable states and narrow-line optical transitions of Ytterbium atoms allow for the versatile control of the system. Here, we first describe our apparatus for producing ultracold Ytterbium-173 quantum gases in an optical lattice. A gas of 3×10^4 Ytterbium-173 atoms is routinely produced at $T/T_F \sim 0.3$, and loaded into an optical lattice potential. Then we report our recent progress on the spin orbital (SO) coupling interaction realized in optical lattice. As a novel quantum simulator, cold Ytterbium atoms with SO coupling provide a platform to explore the intriguing topological physics.

¹Funded by the Research Grants Council (RGC) of Hong Kong Project 16300215 ²Principle Investigator

> Bo Song Hong Kong Univ of Sci Tech

Date submitted: 28 Jan 2016

Electronic form version 1.4