Abstract Submitted for the DAMOP16 Meeting of The American Physical Society

Progress towards isotope-dependent trapping of strontium ROGER DING, FRANCISCO CAMARGO, JOSEPH D. WHALEN, Rice University, GERMANO WOEHL JR., Instituto de Estudos Avancados (IEAv), F. BARRY DUNNING, THOMAS C. KILLIAN, Rice University — Independently controllable trapping potentials for different atomic elements, isotopes, and states are useful for forming quantum degenerate gases through sympathetic cooling, for quantum computing architectures², and for fundamental studies in many-body physics³. In strontium, the large isotope shifts ($\sim 100~\text{MHz}$) relative to the narrow $^1\text{SO}\textsc{-3P1}$ intercombination line (7.5 kHz) offers the possibility of creating multi-isotope optical traps in which the potentials are optimized for each individual species, such as ^{86}Sr with ^{87}Sr or ^{86}Sr with ^{88}Sr , allowing for efficient evaporative cooling. We will present results for confinement of ^{84}Sr when a dimple is created using far-detuned 689 nm light ($\Gamma/\Delta \sim 10^{-5}$) within a large-volume 1064 nm dipole trap ($\Gamma/\Delta \sim 10^{-7}$). The 689 nm dimple will be used to develop a trap for efficient creation of ^{88}Sr Bose-Einstein condensates, overcoming the slow evaporation currently required.

Roger Ding Rice Univ

Date submitted: 28 Jan 2016 Electronic form version 1.4

¹Research supported by the AFOSR, the NSF, and the Robert A, Welch Foundation.

²Anderlini et al., Nature 448, 452-456 (2007)

³Mandel et al., Phys. Rev. Lett. 91, 010407 (2003)