Photodissociation of CS and SiO from Excited Rovibrational Levels1 P. C. STANCIL, R. J. PATTILLO, University of Georgia, B. M. MCLAUGHLIN, J. F. MCCANN, Queen’s University Belfast, R. C. FORREY, Penn State University, J. F. BABB, ITAMP, Harvard-Smithsonian CfA — Photodissociation due to ultraviolet (UV) photons is a dominant molecular destruction process in a variety of UV-irradiated interstellar (IS) environments. While most astrochemical models adopt photodissociation rates computed from cross sections out of the molecule’s ground rovibrational level ($v = 0, J = 0$), they also assume a standard local IS radiation field and opacity due to standard IS dust. However, none of these conditions are satisfied in a host of environments including photodissociation regions, protoplanetary disks, and outflows from AGB stars. To allow for the calculation of reliable photodissociation rates, we compute cross sections from all bound v, J levels of the ground electronic state for two example molecules, CS and SiO. The cross sections are computed for a large number of excited electronic states using a two-state fully quantum perturbation approach. New ab initio potential energies and transition dipole moment functions, used in the photodissociation calculations, were obtained at the MRCI+Q level of theory using the quantum chemistry package MOLPRO. Applications of the v, J-state-resolved cross sections will be presented as well as LTE photodissociation cross sections which assume a Boltzmann distribution of initial v, J levels.

1This work is supported at UGA by NASA grant NNX15AI61G.

Phillip Stancil
University of Georgia

Date submitted: 28 Jan 2016

Electronic form version 1.4