Dynamics of nematic order in ultracold dipolar gases
ULRICH EBLING, MASAHITO UEDA, The University of Tokyo — We study dynamical
properties of ultracold atoms with strong dipole-dipole interactions, such as rare-
earth atoms like Erbium or Dysprosium. Dipole-dipole interactions are anisotropic
and can lead to the appearance of two types of nematic order in such quantum gases.
Orbital nematic order is related to spatial anisotropies such as the deformation of a
Fermi surface of an ultracold dipolar Fermi gas. Spin nematic order is present only
in systems with spin larger than 1/2 as a higher moment of the spin operators. We
study the case of a not fully polarized dipolar gas, such that the intrinsic coupling
of spin and orbital degrees of freedom can lead to an interplay between orbital
and spin nematic order. We investigate how this interplay can lead to a transfer
between orbital and spin nematicity, similar to the transfer of spin into orbital
angular momentum predicted for dipolar gases.