Time-Resolved Luminescence Nanothermometry with Nitrogen-Vacancy Centers in Nanodiamonds

PEI-CHANG TSAI, OLIVER Y. CHEN, YAN-KAI TZENG, HSIOU-YUAN LIU, HSIANG HSU, SHAIO-CHIH HUANG, JESON CHEN, Academia Sinica, Institute of Atomic and Molecular Science, FU-GHOUL YEE, Department of Physics, National Taiwan University, Taipei 106, Taiwan, HUAN-CHENG CHANG, MING-SHIEN CHANG, Academia Sinica, Institute of Atomic and Molecular Science — Measuring thermal properties with nanoscale spatial resolution either at or far from equilibrium is gaining importance in many scientific and engineering applications. Although negatively charged nitrogen-vacancy (NV−) centers in diamond have recently emerged as promising nanometric temperature sensors, most previous measurements were performed under steady state conditions. Here we employ a three-point sampling method which not only enables real-time detection of temperature changes over 100 K with a sensitivity of 2 K/(Hz1/2), but also allows the study of nanometer scale heat transfer with a temporal resolution of better than 1 μs with the use of a pump-probe-type experiment. In addition to temperature sensing, we further show that nanodiamonds conjugated with gold nanorods, as optically-activated dual-functional nanoheaters and nanothermometers, are useful for highly localized hyperthermia treatment. We experimentally demonstrated time-resolved fluorescence nanothermometry, and the validity of the measurements was verified with finite-element numerical simulations. The approaches provided here will be useful for probing dynamical thermal properties on nanodevices in operation.

Jeson Chen
Academia Sinica, Institute of Atomic and Molecular Science

Date submitted: 01 Mar 2016