Recoil effects due to electron shake-off following the beta decay of 6He1 GORDON W.F. DRAKE, EVA SCHULHOFF, University of Windsor — There are currently several experiments in progress to search for new physics beyond the Standard Model by high precision studies of angular correlations in the β decay of the helium isotope 6He to form 6Li + $e^- + \bar{\nu}_e$ [1,2]. After the β decay process, the atomic electrons of 6Li$^+$ adjust to the sudden change of nuclear charge from 2 to 3. We calculate the probabilities for electron shake-up and shake-off, including recoil effects, by the use of a Stieltjes imaging representation of the final states. A variety of sum rules provides tight consistency checks on the accuracy of the results. Results obtained previously [3] indicate that there is a 7σ disagreement between theory and experiment for the additional nuclear recoil induced by the emission of atomic shake-off electrons. This disagreement will be further studied, and the results extended to the $1s2p\; ^3P$ and metastable $1s2s\; ^3S$ states as initial states of 6He before β-decay.

1Research supported by the Natural Sciences and Engineering Research Council of Canada

Gordon Drake
University of Windsor

Date submitted: 29 Jan 2016

Electronic form version 1.4