Abstract Submitted for the DAMOP16 Meeting of The American Physical Society

Photoassociation spectroscopy of 174 Yb Bose-Einstein Condensate using the 1 S₀ \leftrightarrow 3 P₁ transition JONGCHUL MUN, JEONGWON LEE, JAE HOON LEE, KRISS, MIN-SEOK KIM, YONG-IL SHIN, Seoul National University — We studied the photoassociation spectrum of 174 Yb Bose-Einstein condensate (BEC) using an optical Feshbach resonance near the intercombination transition (1 S₀ - 3 P₁, 578 nm). The optical length l_{opt} , which characterize the interaction strength of optical Feshbach resonances, of four least-bound molecular levels ($\nu = -1 \sim -4$) were precisely determined by measuring the two-body loss rate at various optical powers. We also found the parameter $\eta = \Gamma_{spon}/\Gamma_{mol}$, which characterizes the enhancement of molecular loss, to be > 1 as in the previous studies[1,2]. Our BEC apparatus and experimental scheme are also introduced in this presentation.

- [1] Phys. Rev. Lett. 107, 073202 (2011)
- [2] Phys. Rev. Lett. 110, 123201 (2013)

¹This work was supported by KRISS creative research initiative.

Jongchul Mun KRISS

Date submitted: 29 Jan 2016 Electronic form version 1.4