The Formation of Phase Structure in the Creation of Soliton Trains

JASON NGUYEN, DE LUO, RANDALL HULET, Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX 77005 — Matter-wave soliton trains were initially observed following an interaction quench in a condensate of 7Li atoms2. The relative phase between neighboring solitons was inferred to differ by π, giving the appearance of a repulsive interaction between them. The process by which this phase structure is formed is unknown. Starting with a condensate of 7Li atoms in the $|1, 1\rangle$ state, we study the initial formation of soliton trains by quenching the magnetic field to rapidly vary the interaction from repulsive to attractive in a quasi-1-D system. We study the dynamics of the system shortly after the quench, using multiple in situ images. We previously used this technique to study soliton-soliton collisions3.

1Work supported by the NSF, an ARO MURI grant, and the Welch Foundation.
