Abstract Submitted for the DAMOP16 Meeting of The American Physical Society

Role of electronic structure in ionization and fragmentation of endohedral fullerenes $Ho_3N@C_{80}$ in an intense femtosecond laser field¹ HUI XIONG, Univ of Connecticut - Storrs, LI FANG, University of Texas at Austin, TIMUR OSIPOV, LCLS/SLAC, EMILY SISTRUK, LLNL, THOMAS WOLF, PULSE/SLAC, BENOIT MIGNOLET, FRANCOISE REMACLE, University of Lige, MARKUS GHR, Potsdam University, NORA BERRAH, Univ of Connecticut - Storrs — The ionization and fragmentation of gas phase endohedral fullerene $Ho_3N@C_{80}$ was investigated using ultrashort 800 nm laser pulses with an ion velocity map imaging (VMI) spectrometer. The power law's dependence Iⁿ on laser intensity of the singly, doubly, and triply charged $Ho_3N@C_{80}$ molecule and Ho^+ ion fragments have been experimentally determined. Theoretical calculation indicates that the superatom molecular orbitals (SAMOs) electronic states in $Ho_3N@C_{80}$ can be populated through direct multiphoton excitation. The ionization power law essentially reflects the photoexcitation step to the SAMOs. In addition to the molecular nuclear frame heating by electron-vibrational coupling, we observe a rapid heating process, which could be an 'avalanche' process, produced via semi-free electrons impacting the molecular nuclear frame at high laser intensity.

¹This work is funded by the Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under grants No. DE-SC0012376 and DE-SC0012628.

Hui Xiong Univ of Connecticut - Storrs

Date submitted: 29 Jan 2016

Electronic form version 1.4