Few-boson processes in the presence of an attractive impurity under one-dimensional confinement

NIRAV MEHTA, CONNOR MOREHEAD,
Trinity University — We consider the universal few-body physics of a single light impurity atom (L) interacting with a few heavier atoms (H) under strict one-dimensional confinement with zero-range interactions. Due to the mass imbalance, the system is non-integrable. All universal properties are specified by the mass ratio \(\beta = m_L/m_H \) and the coupling ratio \(\lambda = g_{HH}/g_{HL} \), enabling the calculation of few-body “phase diagrams” on the \(\lambda-\beta \) plane. Because the three-body and four-body eigenenergies determine the energy thresholds for inelastic scattering processes involving \(HL, HHL \) and \(HHHL \) collision partners, we are able to partition the \(\lambda-\beta \) phase space into regions according to whether or not particular inelastic processes are energetically allowed.