Abstract Submitted for the DAMOP16 Meeting of The American Physical Society

Progress toward measuring the ⁸⁵Rb ng-series quantum defect using $\Delta l = 0$ microwave spectroscopy¹ KAITLIN MOORE, GEORG RAITHEL, University of Michigan — We describe progress toward a new measurement of the 85 Rb nq-series quantum defect via two-photon microwave spectroscopy of a $\Delta l = 0$ transition using cold Rydberg atoms. Past efforts have used resonant energy transfer² and preliminary microwave spectroscopy of a $\Delta l = 2$ transition³, yielding $\delta_q(n = 30) = 0.00405(6)$ and $\delta_q = 0.00400(9)$, respectively. By performing a $\Delta l = 0$ measurement, we hope to eliminate uncertainties due to lower-l-state quantum defects and differing Landé-q factors and thereby achieve an improved precision. Preliminary measurements will be presented, including efforts at resolving fine structure in the spectrum. Applications of this high-l measurement method toward experimentally determining the dipole and quadrupole core polarizabilities of ⁸⁵Rb will be discussed, including comparisons with calculated values^{4,5} and preliminary experimental limits³, which yield inconsistent results for the dipole polarizability value.

¹Sponsored by NSF P/G F040437

²K.Afrousheh, P.Bohlouli-Zanjani, J.A.Petrus, J.D.D.Martin, PRA, 74, 062712 (2006)

³J.Han, Y.Jamil, D.V.L.Norum, P.J.Tanner, T.F.Gallagher, PRA, 74, 054502 (2006) ⁴J.Heinrichs, J. Chem. Phys. 52, 6316 (1970)

⁵R.M.Sternheimer, PRA 1, 321 (1970)

Kaitlin Moore University of Michigan

Date submitted: 29 Jan 2016

Electronic form version 1.4