Fully differential single-photon double ionization of magnesium\(^1\)

FRANK L YIP, California State University-Maritime Academy, THOMAS N RESCIGNO, C. WILLIAM MCCURDY, Lawrence Berkeley National Lab — The valence-shell double ionization of atomic magnesium is calculated using a grid-based representation of the \(3s^2\) electron configuration in the presence of a fully-occupied frozen-core configuration. Atomic orbitals are constructed from an underlying finite element discrete variable representation (FEM-DVR) that facilitate accurate representation of the interaction between the inner shell electrons with those entering the continuum. Comparison between the similar processes of double ionization of the \(ns^2\) atoms helium, beryllium and magnesium are presented to further illuminate the role of valence-shell electron correlation in atomic targets with analogous configurations and symmetries. Both a time-independent and time-dependent formalism for evaluating double ionization amplitudes is applied to these many-electron targets. Results are compared with recent theoretical calculations and experimental measurements.

\(^1\)Work supported by the US Dept. of Energy, Division of Chemical Sciences Contract DE-AC02-05CH11231 and the National Science Foundation, No. PHY-1509971

Frank L Yip
California State University-Maritime Academy

Date submitted: 29 Jan 2016
Electronic form version 1.4