A 2D MOT design optimized for dual-species $^{6}\text{Li}-^{7}\text{Li}$ experiments

YANPING CAI, JESSE EVANS, KEVIN WRIGHT, Dartmouth — We have built a 2D MOT optimized for simultaneous capture and cooling of ^{6}Li and ^{7}Li. The design includes a vapor source located very close to the capture region, which reduces depletion of the low-velocity part of the oven flux. The source is angled so that the most probable longitudinal velocity of captured atoms is near optimal for transferring to a 3D MOT, even without a push beam. Because ^{6}Li D2 repump light can impede capture and cooling of ^{7}Li, we have characterized the system performance with ^{6}Li repumped on both the D1 and D2 transitions. This design provides ample cold atom flux to load a dual-species 3D MOT for quantum degenerate gas experiments.