Optical hyperpolarization and inductive readout of ^{31}P donor nuclei in natural abundance single crystal ^{29}Si THOMAS ALEXANDER, HOLGER HAAS, RAHUL DESHPANDE, Institute for Quantum Computing, University of Waterloo, PATRYK GUMANN, IBM Research, DAVID CORY, Institute for Quantum Computing, University of Waterloo — We optically polarize and inductively detect ^{31}P donor nuclei in single crystal silicon at high magnetic fields (6.7T). Samples include both natural abundance ^{29}Si and an isotopically purified ^{28}Si sample. We observe dipolar order in the ^{29}Si nuclear spins through a spinlocking measurement. This provides a means of characterizing spin transport in the vicinity of the ^{31}P donors.

Thomas Alexander
Univ of Waterloo

Date submitted: 29 Jan 2016 Electronic form version 1.4