Abstract Submitted
for the DAMOP16 Meeting of
The American Physical Society

Cross sections for Scattering and Mobility of \(\text{OH}^- \) and \(\text{H}_3\text{O}^+ \) ions in \(\text{H}_2\text{O} \)

ZORAN PETROVIC, VLADIMIR STOJANOVIC, DRAGANA MARIC, Institute of Physics, University of Belgrade, POB 68, Zemun, Serbia, JASMINA JOVANOVIC, Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia — Modelling of plasmas in liquids and in biological and medical applications requires data for scattering of all charged and energetic particles in water vapour. We present swarm parameters for \(\text{OH}^- \) and \(\text{H}_3\text{O}^+ \), as representatives of principal negative and positive ions at low pressures in an attempt to provide the data that are not yet available. We applied Denpoh-Nanbu procedure to calculate cross section sets for collisions of \(\text{OH}^- \) and \(\text{H}_3\text{O}^+ \) ions with \(\text{H}_2\text{O} \) molecule. Swarm parameters for \(\text{OH}^- \) and \(\text{H}_3\text{O}^+ \) ions in \(\text{H}_2\text{O} \) are calculated by using a well tested Monte Carlo code for a range of \(\frac{E}{N} \) (electric field, \(N \)-gas density) at temperature \(T = 295 \) K, in the low pressure limit. Non-conservative processes were shown to strongly influence the transport properties even for \(\text{OH}^- \) ions above the average energy of 0.2 eV (\(\frac{E}{N} > 200 \) Td). The data are valid for low pressure water vapour or small amounts in mixtures. They will provide a basis for calculating properties of ion-water molecule clusters that are most commonly found at higher pressures and for modelling of discharges in liquids.

1Acknowledgment to Ministry of Education, Science and Technology of Serbia.
2also at Serbian Academy of Sciences and Arts, Belgrade, Serbia

Zoran Petrovic
Institute of Physics, University of Belgrade, POB 68, Zemun, Serbia

Date submitted: 29 Jan 2016