Abstract Submitted for the DAMOP16 Meeting of The American Physical Society

Production of rovibronic ground-state ⁸⁵Rb¹³³Cs molecules via photoassociation to $\Omega = 1$ states TOSHIHIKO SHIMASAKI, Yale University, JIN TAE KIM, Yale University, Chosun University (Korea), DAVID DEMILLE, Yale University — We have extensively investigated short-range photoassociation (PA) to the $(2)^{3}\Pi_{1}$, $(2)^{1}\Pi_{1}$, and $(3)^{3}\Sigma_{1}^{+}$ states of ⁸⁵Rb¹³³Cs in the region between 11650 cm⁻¹ and 12100 cm⁻¹, where strong mixing between triplet and singlet states is expected. In contrast to the previously observed two-photon cascade decay from the $(2)^{3}\Pi_{0}$ states ¹, here we observe that the PA excited states can directly decay to the rovibronic ground state $X^{1}\Sigma^{+}(v = 0, J = 0)$ by a one-photon transition. We have observed rich hyperfine structures of the PA states, which were unresolved in previous cold beam experiments in the same region ². Based on the analysis of vibrational and rotational branching ratios in the decay process to the $X^{1}\Sigma^{+}$ state, we will discuss the molecule production rate in comparison with that for PA to the $(2)^{3}\Pi_{0}$ states. We will also report on a similar study of PA to the $B^{1}\Pi$ and $(2)^{3}\Sigma_{1}^{+}$ states of ⁸⁵Rb¹³³Cs, which also produce the rovibronic ground state $X^{1}\Sigma^{+}(v = 0, J = 0)$ via direct one-photon decay.

¹T. Shimasaki *et al.* Phys. Rev. A, 91, 021401(R)(2015) ²Y. Lee *et al.* J. Phys. Chem. A, 112, 7214(2008)

> Toshihiko Shimasaki Yale University

Date submitted: 29 Jan 2016

Electronic form version 1.4