Abstract Submitted for the DAMOP16 Meeting of The American Physical Society

Progress Towards Measurement of the Anapole Moment of ${}^{137}\text{Ba}{}^{19}\text{F}$ SIDNEY CAHN, EMINE ALTUNTAS, DAVID DEMILLE, Yale University, MIKHAIL KOZLOV, Petersburg Nuclear Physics Institute — Weak interactions inside the nucleus produce a toroidal current distribution around the axis of nuclear spin. This current distribution, known as the nuclear anapole moment is the dominant source of nuclear spin-dependent parity violation (NSD-PV) effects for nuclei with nucleon number $A \geq 20$. We propose to measure the anapole moment of ${}^{137}\text{Ba}{}^{19}\text{F}$. To diagnose systematics and establish a measurement sequence we use ${}^{138}\text{Ba}{}^{19}\text{F}$, which has negligible NSD-PV effects. ${}^{138}\text{Ba}{}^{19}\text{F}$ has a larger isotopic abundance and fewer hyperfine levels compared to those of ${}^{137}\text{Ba}{}^{19}\text{F}$. Therefore fluorescence signals from ${}^{138}\text{Ba}{}^{19}\text{F}$ are approximately 26 times larger than those from ${}^{137}\text{Ba}{}^{19}\text{F}$. Here we present planned improvements to our apparatus, including a magnetic hexapole lens to improve the molecular beam flux and preliminary spectroscopy measurements with ${}^{137}\text{Ba}{}^{19}\text{F}$.

Emine altuntas Yale University

Date submitted: 29 Jan 2016

Electronic form version 1.4