Development of Multi-Color Time-Resolved Spectroscopy Methods for Investigating Molecular Systems1 KIRK LARSEN, ELIO CHAMPENNOIS, TRAVIS WRIGHT, JAMES CRYAN, NIRANJAN SHIVARAM, DIPANWITA RAY, TYLER TROY, BISWAJIT BANDYOPADHYAY, OLEG KOSTKO, BRUCE RUDE, MUSA AHMED, ALI BELKACEM, DAN SLAUGHTER, Lawrence Berkeley Natl Lab — Ultrafast transient absorption spectroscopy facilitates the study of a system's electronic excited state dynamics. Employing a multi-color technique, the time evolution of excited states of a given target can be investigated in great detail. We have developed methods for performing multi-color experiments using a femtosecond UV (266nm) pulse obtained from a frequency tripled IR (800nm) pulse, in conjunction with soft x-rays from the synchrotron at the Advanced Light Source (ALS). We are additionally working towards developing similar techniques with multi-color, multi-pulse schemes using extreme ultraviolet light from a high harmonic generation (HHG) source as a probe. We also present reflectivity measurements of different mirror coatings, that allow us to select relevant energies from the HHG source.

1work supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE