DAMOP16-2016-020011

Abstract for an Invited Paper for the DAMOP16 Meeting of the American Physical Society

Searching for dark energy with matter wave interferometry PAUL HAMILTON, University of California, Los Angeles

The nature of dark energy, which makes up 70% of the mass-energy of the universe, remains completely unknown. Chameleons are a simple scalar model for dark energy that mediate a force which is screened by bulk matter. However we can now probe these scalar fields using atoms as nearly ideal test masses in the vacuum of our cavity-based matter wave interferometer [1, 2]. Our first measurements ruled out a range of chameleons that would reproduce the observed cosmic acceleration [3]. Since then we have improved sensitivity by a factor of 100. With a similar future improvement, we will be sensitive to any possible chameleon field and other exotic models for dark energy and dark matter, such as symmetrons or f(R) gravity.

[1] C. Burrage, E. Copeland, E Hinds, JCAP 03 (2015) 042

[2] P. Hamilton, M. Jaffe, J.M. Brown, L. Maisenbacher, B. Estey, H. Müller, Phys. Rev. Lett. 114, 100405 (2015)

[3] P. Hamilton, M. Jaffe, P. Haslinger, Q. Simmons, H. Müller, J. Khoury, Science 349, 6250 (2015)