DAMOP16-2016-020028

Abstract for an Invited Paper for the DAMOP16 Meeting of the American Physical Society

Entangled states of spin and clock oscillators EUGENE POLZIK, Niels Bohr Institute, University of Copenhagen

Measurements of one quadrature of an oscillator with precision beyond its vacuum state uncertainty have occupied a central place in quantum physics for decades. We have recently reported the first experimental implementation of such measurement with a magnetic oscillator [1]. However, a much more intriguing goal is to trace an oscillator trajectory with the precision beyond the vacuum state uncertainty in *both* position and momentum, a feat naively assumed not possible due to the Heisenberg uncertainty principle. We have demonstrated that such measurement is possible if the oscillator is entangled with a quantum reference oscillator with an effective negative mass [2,3]. The key element is the cancellation of the back action of the measurement on the composite system of two oscillators. Applications include measurements of e.-m. fields, accelleration, force and time [4] with practically unlimited accuracy. In a more general sense, this approach leads to trajectories without quantum uncertainties and to achieving new fundamental bounds on the measurement precision.

- 1. G. Vasilakis et al. Nature Phys., (2015) doi:10.1038/nphys3280.
- 2. K. Hammerer et al. Phys. Rev. Lett. 102, 020501 (2009).
- 3. E.S. Polzik and K.Hammerer. Annalen der Physyk. 527, No. 1–2, A15–A20 (2015).
- 4. E. S. Polzik and J. Ye. doi: 10.1103/PhysRevA.93.021404 (2016).