Abstract Submitted for the DAMOP16 Meeting of The American Physical Society

Observation of Broadband Ultraviolet Emission From Hg₃^{*} WENT-ING CHEN, THOMAS GLAVIN, JAMES EDEN, Univ of Illinois - Urbana, LABORATORY FOR OPTICAL PHYSICS AND ENGINEERING TEAM — A previously-unobserved emission continuum, peaking at ~ 380 nm, has been observed when Hg vapor is photoexcited at 248 nm (KrF laser). Attributed to the mercury trimer, Hg₃, this emission continuum has a spectral breadth (FWHM) which increases from ~ 65 nm to ~ 90 nm when the Hg number density rises from ~ 10^{16} cm⁻³ to ~ 2 × 10¹⁹ cm⁻³. Over the same interval in [Hg], the emission decay rate increases only slightly (~ 6 × 10³ s⁻¹ to ~ 7 × 10³ s⁻¹). Comparisons of the observed spectrum with theory [1] suggest that the observed continuum is the result of transitions between pairs of electronic states having a linear or equilateral triangular configuration. [1] Kitamura, Hikaru. "Theoretical potential energy surfaces for excited mercury trimers." Chemical Physics, 325(2), 207 (2006)

> Wenting Chen Univ of Illinois - Urbana

Date submitted: 18 Mar 2016

Electronic form version 1.4