DAMOP17-2017-000086

Abstract for an Invited Paper for the DAMOP17 Meeting of the American Physical Society

Resonances in Positron Annihilation on Molecules – Which Bells Ring?¹

CLIFFORD M. SURKO², Physics Department, University of California, San Diego

Positron collisions with molecules can result in the excitation of high-Q vibrational Feshbach resonances – temporary positronmolecule bound states that exhibit greatly enhanced annihilation rates.³ A simple theory agrees well with data for annihilation spectra as a function of incident positron energy for selected molecules, such as methyl halides, in which infrared-active vibrations dipole-couple the incident positron to the bound state.⁴ However additional effects appear to be prominent in most molecules, including the excitation of combination and overtone modes.⁵ Until now, limited energy resolution has inhibited the study of these effects. A recently developed, high-energy-resolution, cryogenic trap-based beam is used to investigate two other ways to "ring the molecule's bells": positron coupling to infrared-inactive modes and the excitation of combination modes. The operation of the new beam system will be briefly described,⁶ followed by a discussion of highresolution data for molecules that provide evidence of resonant annihilation due to infrared *inactive* modes. Data exploring the possible excitation of combination modes will also be discussed and related to broad and featureless regions of the annihilation spectra observed in many molecules.^{3,5}

¹This work is supported by NSF grant PHY 14-01794.

- $^2\mathrm{Work}$ done in collaboration with M. R. Natisin and J. R. Danielson.
- ³G. F. Gribakin, J. A. Young, and C. M. Surko, *Rev. Mod. Phys.* 82, 2557 (2010).
- ⁴G. F. Gribakin and C. M. R. Lee, *Phys. Rev. Lett.* **97**, 193201 (2006).
- ⁵A. C. L. Jones, J. R. Danielson, M. R. Natisin, C. M. Surko, and G. F. Gribakin, *Phys. Rev. Lett.* 108, (2012).
- ⁶M. R. Natisin, J. R. Danielson, and C. M. Surko, Appl. Phys. Lett. 108, 024102 (2016).