Abstract Submitted for the DAMOP17 Meeting of The American Physical Society

Electron transfer, ionization, and excitation in collisions between protons and the ions \mathbf{F}^{8+} and \mathbf{Ne}^{9+} THOMAS WINTER, Retired — Coupled-state cross sections are being determined for electron transfer, ionization, and excitation in collisions between keV-energy protons and the hydrogenic ions \mathbf{F}^{8+} and \mathbf{Ne}^{9+} initially in the ground state, extending early and more recent work on the less highly charged target ions \mathbf{He}^+ , \mathbf{Li}^{2+} , \mathbf{Be}^{3+} , \mathbf{B}^{4+} , and \mathbf{C}^{5+} , and work reported at the 2016 DAMOP meeting on the target ions \mathbf{N}^{6+} and \mathbf{O}^{7+} . As in the more recent works, a basis of 60 Sturmians on each center is being used, and in a second calculation, a basis of 280 Sturmians on the target nucleus and a single 1s function on the proton is being used. The extent to which high-energy scaling rules with target nuclear charge Z are valid is being examined further for transfer to the ground state, total transfer, and ionization, as well as for excitation and individual-state processes at intermediate energies near where the cross sections peak, and at lower energies.

¹T. G. Winter, Phys. Rev. A **35**, 3799 (1987).

²T. G. Winter, Phys. Rev. A **87**, 032704 (2013).

Thomas Winter Retired

Date submitted: 22 Jan 2017 Electronic form version 1.4