Atomic vapor spectroscopy in integrated photonic structures

TILMAN PFAU, RALF RITTER, Center for Integrated Quantum Science and Technology, Universitaet Stuttgart, NICO GRUHLER, WOLFRAM PERNICE, Institute of Physics, University of Muenster, Germany, HARALD KUEBLER, ROBERT LOEW, Center for Integrated Quantum Science and Technology, Universitaet Stuttgart — We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications [1]. This includes integrated ring resonators [2], Mach Zehnder interferometers, slot waveguides and counterpropagating coupling schemes. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of strong atom light coupling. Cooperativities on the order of 1 are within reach. In the future integrated optical and electronic circuits in atomic vapor cells will enable applications in quantum sensing and quantum networks. [1] R. Ritter, et al., Appl. Phys. Lett. 107, 041101 (2015) [2] R. Ritter, et al., New Journal of Physics 18, 103031 (2016)

Tilman Pfau
Universitaet Stuttgart

Date submitted: 03 Feb 2017
Electronic form version 1.4