Novel mechanism for creating long-lived metastable atomic negative ions1 ALFRED MSEZANE, ZINEB FELFLI, Clark Atlanta University — A novel mechanism is proposed for creating long-lived metastable atomic negative ions in complex atoms, such as the lanthanides. It exploits the orbital collapse of the 5d orbital in Gd (Z=64) into the 4f orbital of Tb (Z=65). In the region of collapse the properties of the 5d and 4f orbitals are quite sensitive to the changes in the effective potential. Consequently the collapse phenomenon impacts the core-polarization interaction significantly in the relevant atom, namely Tb inducing a new excited Tbanion. The mechanism is demonstrated in the lanthanide atoms Tb and Dy through the appearance of long-lived Tband Dyanions in the Regge pole calculated electron elastic total cross sections. Ground and long-lived metastable negative ion formation occurs at the second Ramsauer -Townsend minima.

1This work was supported by U.S. DOE, Basic Energy Sciences, Office of Energy Research