Manipulation of heteronuclear spin dynamics with microwave and vector light shift

LINTAO LI, BO LU, BING ZHU, DAJUN WANG, Chinese Univ of Hong Kong — We report the study of heteronuclear spin-exchange dynamics starting from a spin-1 mixture of Rb|1,0> and Na|1,0> atoms, which depends on the competition between the Zeeman energy and interspecies spin-dependent interaction energy. Within a narrow magnetic field window around 1 G, we have observed a dramatic enhancement of a particular process: Rb|1,0> + Na|1,0> ↔ Rb|1,1> + Na|1,-1>. We also demonstrated the ability to precisely manipulate this process via a far-detuned microwave or laser field. The microwave method, similar to that in single-species spinor gases, tunes the species-selective quadratic Zeeman energy. As a comparison, the light field shifts the species-dependent linear Zeeman energy. Both methods are shown to be powerful and flexible in our system. Our investigations have revealed the richness of quantum manipulations in heteronuclear spinor systems.

1This project is supported by the GRF grants 403813 and 14305214 of RGC Hong Kong.
2Current position is School of Physics and Astronomy, Sun Yat-Sen University
3Current position is Physikalisches Institut of the University of Heidelberg

Lintao Li
Chinese Univ of Hong Kong

Date submitted: 25 Jan 2017

Electronic form version 1.4