EDM measurements on cold ^{225}Ra and ^{171}Yb atoms

TIAN XIA, University of Science and Technology of China, MATTHEW DIETRICH, Argonne National Laboratory, ZHENG-TIAN LU, University of Science and Technology of China, RA-EDM COLLABORATION — EDM measurements on diamagnetic atoms probe CP-violating effects in the nucleus. Some types of these Beyond-Standard-Model effects are known to be strongly enhanced in ^{225}Ra due to octupole deformation of the nucleus. Other favorable characteristics of ^{225}Ra include a high atomic number ($Z = 88$), a ground state of $^1\text{S}_0$, and a nuclear spin 1/2. An EDM search is carried out on this radioactive isotope (half-life 15 d) using laser-cooled atoms. Meanwhile, the stable isotope ^{171}Yb shares several characteristics, including $^1\text{S}_0$ and nuclear spin 1/2, and is particularly useful as a proxy of ^{225}Ra for developing laser trapping and probing techniques, for testing various measurement schemes, and for investigating systematic errors. Furthermore, ^{171}Yb atoms can be placed within 0.1 mm of ^{225}Ra, and act as a co-magnetometer. A laser trap of Yb atoms for an EDM measurement is under development.

1National science foundation of China, Chinese academy of science, Department of energy

Tian Xia
Univ of Sci & Tech of China