Abstract Submitted for the DAMOP17 Meeting of The American Physical Society

Properties of Lu^{2+} ion for the atomic clock development M. S. SAFRONOVA, University of Delaware and JQI, NIST and the University of Maryland, W. R. JOHNSON, University of Notre Dame, U. I. SAFRONOVA, University of Nevada, Reno — Significant bottleneck for further improvement of trapped ion clock accuracy arises from relatively low stability achievable with a single ion. A solution was proposed [1] that may allow to overcome this hurdle via the use of large ion crystals with a special scheme to cancel the effects of micromotion. The crucial condition for the implementation of such a scheme is the negative value of the scalar polarizability difference for the clock transition. Doubly ionized lutetium satisfies such a condition, and a potentially promising candidate for multi-ion clock development [2]. In this work, we study relevant parameters of Lu^{2+} , including transition matrix elements, lifetimes, polarizabilities, hyperfine constants and the blackbody radiation shift of the potential clock transition [3].

[1] K. J. Arnold *et al.*, Phys. Rev. A 92, 032108 (2015).

[2] K. J. Arnold and M. D. Barrett (2016), arXiv:1607.04344.

[3] U. I. Safronova, M. S. Safronova, W. R. Johnson, Phys. Rev. A 94, 032506 (2016).

> Ulyana Safronova University of Nevada, Reno

Date submitted: 25 Jan 2017

Electronic form version 1.4